un=n(n+1)1
un=n(n+1)(n+1)−n=n1−n+11
un=f(n+1)−f(n)=−n+11+n1
par identification, f(n)=n1
Sp=∑n=1Pn(n+1)1=∑n=1Pn1−∑n=1Pn+11
Soit m=n+1
Sp=∑n=1Pn1−∑m=2P+1m1
Sp=1+21+⋯+P1−21+⋯+P1+p+11
$\boxed{S_p=1-\frac1{P+1}}\quad$Converge
un=n(n+1)(n+2)1
un=n(n+1)(n+2)(n+2)−(n+1)
un=n(n+1)1−n(n+2)1
un=n1−n+11−2n(n+2)(n+2−n)
un=n1−2n1+2(n+2)1
un=2n1−n+11−n(n+2)1
Sp=21∑n=1Pn1−∑n=1Pn+11−21∑n=1Pn+21
Sp=21∑1PN1−21∑q=3p+2q1−∑m=2P+1m1
Sp=21(1+21+...+P1) − 21(31+...+P1+P+11+P+21)
− (21+31+...+P+11)
Sp=21+41−2(P+1)1−2(P+2)1−∑n=1Pn+11