% \global\newcommand{\n}{\\ \ \\}
% \global\newcommand{\embrace}[3]{
% \left#2
% \begin{split}
% #1
% \end{split}
% \right#3
% }
% \global\newcommand{\aembrace}[1]{
% \embrace{#1}{\{}{\}}
% }
% \global\newcommand{\pembrace}[1]{
% \embrace{#1}{(}{)}
% }
% \global\newcommand{\cembrace}[1]{
% \embrace{#1}{[}{]}
% }
Thm de Green-Riemann
∫ δ D P d x + Q d y = ∬ D ( δ Q δ x − δ P δ y ) d x d y on veut: ∣ δ Q δ x − δ P δ y On pose: P ( x , y ) = − y − 2 δ P δ y = − 1 2 Q ( x , y ) = − x 2 δ Q δ x = 1 2 \begin{split}
&\int_{\delta D}Pdx+Qdy=\iint_D\pembrace{\frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y}}dxdy\n
&\text{on veut:}\\
&\embrace{
&\frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y}\n
&\text{On pose:}\n
&P(x,y)=\frac{-y}{\phantom{-}2}\quad\frac{\delta P}{\delta y} = \frac{-1}{2}\n
&Q(x,y)=\phantom{-}\frac{x}{2}\quad\frac{\delta Q}{\delta x}=\frac{1}{2}
}{|}{.}
\end{split}
∫ δD P d x + Q d y = ∬ D ( δ x δ Q − δy δ P ) d x d y on veut: δ x δ Q − δy δ P On pose: P ( x , y ) = − 2 − y δy δ P = 2 − 1 Q ( x , y ) = − 2 x δ x δ Q = 2 1
Aide de D = ∬ D d x d y = ∫ δ D + = − y 2 d x + x 2 d y ∬ D d x d y = 1 2 ∫ δ D + x d y − y d x \begin{split}
&\text{Aide de D = }\iint_D dxdy = \int_{\delta D^+}=\frac{-y}{2}dx+\frac{x}{2}dy\n
&\boxed{
\iint_D dxdy=\frac12\int_{\delta D^+}xdy-ydx\n
}\n
\end{split}
Aide de D = ∬ D d x d y = ∫ δ D + = 2 − y d x + 2 x d y ∬ D d x d y = 2 1 ∫ δ D + x d y − y d x
Ex5 b) : Calculer l'aide de D
<sch e ˊ ma cornet> Aide(D) = 1 2 ∫ θ 1 θ 2 f 2 ( θ ) d θ Γ 1 + { x = r c o s θ 1 y = r s i n θ 1 r ∈ [ 0 , f ( θ 1 ) ] Γ 2 + { x = f ( θ ) c o s θ y = f ( θ ) s i n θ r ∈ [ θ 1 , θ 2 ] Γ 3 + { x = r c o s θ 2 y = r s i n θ 2 r ∈ [ f ( θ 2 ) , 0 ] ∬ D d x d y = ∫ Γ 1 + + ∫ Γ 2 + + ∫ Γ 3 + = I 1 + I 2 + I 3 I 1 = I 3 = 0 I 2 = 1 2 ∫ θ 1 θ 2 f ( θ ) c o s θ [ f ′ ( θ ) s i n θ + f ( θ ) c o s θ ] d θ − f ( θ ) s i n θ [ f ′ ( θ ) c o s θ + f ( θ ) ( − s i n θ ) ] d θ = 1 2 ∫ θ 1 θ 2 f 2 ( θ ) ( c o s 2 θ + s i n 2 θ ) d θ Aide(D) = 1 2 ∫ θ 1 θ 2 f 2 ( θ ) d θ \begin{split}
&\text{<schéma cornet>}\n
&\text{Aide(D)}=\frac12\int_{\theta_1}^{\theta_2}f^2(\theta)d\theta\n
&\Gamma_1^+
\ \ \embrace{
&x=rcos\theta_1\\
&y=rsin\theta_1\\
&r\in\cembrace{0,f(\theta_1)}
}{\{}{.}\quad
\Gamma_2^+
\ \ \embrace{
&x=f(\theta)cos\theta\\
&y=f(\theta)sin\theta\\
&r\in\cembrace{\theta_1,\theta_2}
}{\{}{.}\quad
\Gamma_3^+
\ \ \embrace{
&x=rcos\theta_2\\
&y=rsin\theta_2\\
&r\in\cembrace{f(\theta_2),0}
}{\{}{.}\n
&\iint_D dxdy = \int_{\Gamma_1^+}+\int_{\Gamma_2^+}+\int_{\Gamma_3^+} = I_1+I_2+I_3\n
&I_1=I_3=0\n
&I_2=\frac12 \int_{\theta_1}^{\theta_2}f(\theta)cos\theta\cembrace{f'(\theta)sin\theta+f(\theta)cos\theta}d\theta\\
&\quad\quad-f(\theta)sin\theta\cembrace{f'(\theta)cos\theta+f(\theta)(-sin\theta)}d\theta\n
&=\frac12\int_{\theta_1}^{\theta_2}f^2(\theta)(cos^2\theta+sin^2\theta)d\theta\n
&\text{Aide(D)}=\frac12\int_{\theta_1}^{\theta_2}f^2(\theta)d\theta
\end{split}
<sch e ˊ ma cornet> Aide(D) = 2 1 ∫ θ 1 θ 2 f 2 ( θ ) d θ Γ 1 + ⎩ ⎨ ⎧ x = rcos θ 1 y = rs in θ 1 r ∈ [ 0 , f ( θ 1 ) ] Γ 2 + ⎩ ⎨ ⎧ x = f ( θ ) cos θ y = f ( θ ) s in θ r ∈ [ θ 1 , θ 2 ] Γ 3 + ⎩ ⎨ ⎧ x = rcos θ 2 y = rs in θ 2 r ∈ [ f ( θ 2 ) , 0 ] ∬ D d x d y = ∫ Γ 1 + + ∫ Γ 2 + + ∫ Γ 3 + = I 1 + I 2 + I 3 I 1 = I 3 = 0 I 2 = 2 1 ∫ θ 1 θ 2 f ( θ ) cos θ [ f ′ ( θ ) s in θ + f ( θ ) cos θ ] d θ − f ( θ ) s in θ [ f ′ ( θ ) cos θ + f ( θ ) ( − s in θ ) ] d θ = 2 1 ∫ θ 1 θ 2 f 2 ( θ ) ( co s 2 θ + s i n 2 θ ) d θ Aide(D) = 2 1 ∫ θ 1 θ 2 f 2 ( θ ) d θ
Ex6
ω = 2 ( x + y 2 ) ⏟ P ( x , y ) d x + ( 4 x y + 3 y 2 ) ⏟ Q ( x , y ) d y { δ P δ y = 4 y δ Q δ x = 4 y ⇒ la forme diff e ˊ rentielle est ferm e ˊ e <schema triangle> ∫ γ + = ∫ A B ω + ∫ B C ω + ∫ C A ω A B : ∣ { x ∈ [ 0 , 1 ] y = 0 { x = t y = 0 { d x = d t d y = 0 ∫ 0 1 2 t d t = 2 [ t 2 2 ] 0 1 = 2 ∗ 1 2 = 1 B C : ∣ { x = 1 − t y = t { d x = − d t d y = d t t ∈ [ 0 , 1 ] ∫ 0 1 2 ( ( 1 − t ) + t 2 ) ( − d t ) + ( 4 ( 1 − t ) t + 3 t 2 ) d t ∫ 0 1 ( − 2 ( 1 − t + t 2 ) + 4 t − 4 T 2 + 3 t 2 ) d t ∫ 0 1 ( − 2 + 2 t − 2 t 2 + 4 t − t 2 ) d t ∫ 0 1 − 3 t 2 + 6 t − 2 = − 3 [ t 3 3 ] 0 1 + 6 [ t 2 2 ] 0 1 − 2 [ t ] 0 1 = − 1 + 6 / 2 − 2 = 0 C A : ∣ { y = t x = 0 { d y = d t t ∈ [ 0 , 1 ] I = ∫ 0 1 3 t 2 d t I = 3 [ t 3 3 ] 0 1 = 0 − ( 1 ) 3 = − 1 \begin{split}
&\omega=\underbrace{2\pembrace{x+y^2}}_{P(x,y)}dx+\underbrace{\pembrace{4xy+3y^2}}_{Q(x,y)}dy\n
&\embrace{&\frac{\delta P}{\delta y}=4y\\&\frac{\delta Q}{\delta x}=4y}{\{}{.}\quad\Rightarrow\text{la forme différentielle est fermée}\n
&\text{<schema triangle>}\n
&\int_{\gamma^+}=\int_{AB}\omega+\int_{BC}\omega+\int_{CA}\omega\n
&AB:\\
&\embrace{
&\embrace{&x\in\cembrace{0,1}\\&y=0}{\{}{.}\quad \embrace{&x=t\\&y=0}{\{}{.}\quad \embrace{&dx=dt\\&dy=0}{\{}{.}\n
&\int_0^12tdt= 2\cembrace{\frac{t^2}{2}}_{0}^{1}=2*\frac12=1
}{|}{.}\n
&BC:\\
&\embrace{
&\embrace{&x=1-t\\&y=t}{\{}{.}\quad \embrace{&dx=-dt\\&dy=dt}{\{}{.}\\
&t\in\cembrace{0,1}\n
&\int_0^12\pembrace{(1-t)+t^2}(-dt)+(4(1-t)t+3t^2)dt\\
&\int_0^1(-2(1-t+t^2)+4t-4T^2+3t^2)dt\\
&\int_0^1(-2+2t-2t^2+4t-t^2)dt\\
&\int_0^1-3t^2+6t-2=-3[\frac{t^3}{3}]_0^1+6[\frac{t^2}{2}]_0^1-2[t]_0^1\\
&\quad\quad=-1+6/2-2=0
}{|}{.}\n
&CA:\\
&\embrace{
&\embrace{&y=t\\&x=0}{\{}{.}\quad\embrace{dy=dt\\ \ }{\{}{.}\\
&\ t\in\cembrace{0,1}
}{|}{.}\n
&I=\int_0^1 3t^2dt\\
&\phantom{I} = 3\cembrace{\frac{t^3}{3}}_0^1=0-(1)^3=-1
\end{split}
ω = P ( x , y ) 2 ( x + y 2 ) d x + Q ( x , y ) ( 4 x y + 3 y 2 ) d y ⎩ ⎨ ⎧ δy δ P = 4 y δ x δ Q = 4 y ⇒ la forme diff e ˊ rentielle est ferm e ˊ e <schema triangle> ∫ γ + = ∫ A B ω + ∫ BC ω + ∫ C A ω A B : ⎩ ⎨ ⎧ x ∈ [ 0 , 1 ] y = 0 { x = t y = 0 { d x = d t d y = 0 ∫ 0 1 2 t d t = 2 [ 2 t 2 ] 0 1 = 2 ∗ 2 1 = 1 BC : { x = 1 − t y = t { d x = − d t d y = d t t ∈ [ 0 , 1 ] ∫ 0 1 2 ( ( 1 − t ) + t 2 ) ( − d t ) + ( 4 ( 1 − t ) t + 3 t 2 ) d t ∫ 0 1 ( − 2 ( 1 − t + t 2 ) + 4 t − 4 T 2 + 3 t 2 ) d t ∫ 0 1 ( − 2 + 2 t − 2 t 2 + 4 t − t 2 ) d t ∫ 0 1 − 3 t 2 + 6 t − 2 = − 3 [ 3 t 3 ] 0 1 + 6 [ 2 t 2 ] 0 1 − 2 [ t ] 0 1 = − 1 + 6/2 − 2 = 0 C A : { y = t x = 0 { d y = d t t ∈ [ 0 , 1 ] I = ∫ 0 1 3 t 2 d t I = 3 [ 3 t 3 ] 0 1 = 0 − ( 1 ) 3 = − 1
Ex7 a)
I = ∬ D x y d x d y D = { ( x , y ) ∈ R 2 ∣ x ≥ 0 , y ≥ 0 , x + y ≤ 1 } I = ∫ 0 1 ∫ 0 1 x y d y d x I = ∫ 0 1 x ∫ 0 1 − x y d y d x I = ∫ 0 1 x [ y 2 2 ] 0 1 − x d x I = ∫ 0 1 x ( ( 1 − x ) 2 2 ) d x = 1 2 ∫ 0 1 x ( 1 + x 2 − 2 x ) d x I = 1 2 ∫ 0 1 ( x + x 3 − 2 x 2 ) d x I = 1 2 [ x 2 2 + x 4 4 − 2 x 2 3 ] 0 1 I = 1 2 [ 1 2 + 1 4 − 2 3 ] I = 1 2 [ 9 − 8 12 ] = 1 24 \begin{split}
&I=\iint_D xydxdy\\
&D=\aembrace{(x,y)\in\R^2\ |\ x\ge0,\ y\ge0,\ x+y\le1}\n
&I=\int_0^1\int_0^1xydydx\n
&I=\int_0^1x\int_0^{1-x}ydydx\n
&I=\int_0^1x\cembrace{\frac{y^2}2}_0^{1-x}dx\n
&I=\int_0^1x\pembrace{\frac{(1-x)^2}{2}}dx=\frac12\int_0^1x(1+x^2-2x)dx\n
&I=\frac12\int_0^1(x+x^3-2x^2)dx\n
&I=\frac12 \cembrace{\frac{x^2}{2}+\frac{x^4}{4}-2\frac{x^2}{3}}_{0}^{1}\n
&I=\frac12\cembrace{\frac12+\frac14-\frac23}\n
&I=\frac12\cembrace{\frac{9-8}{12}}=\frac{1}{24}\n
\end{split}
I = ∬ D x y d x d y D = { ( x , y ) ∈ R 2 ∣ x ≥ 0 , y ≥ 0 , x + y ≤ 1 } I = ∫ 0 1 ∫ 0 1 x y d y d x I = ∫ 0 1 x ∫ 0 1 − x y d y d x I = ∫ 0 1 x [ 2 y 2 ] 0 1 − x d x I = ∫ 0 1 x ( 2 ( 1 − x ) 2 ) d x = 2 1 ∫ 0 1 x ( 1 + x 2 − 2 x ) d x I = 2 1 ∫ 0 1 ( x + x 3 − 2 x 2 ) d x I = 2 1 [ 2 x 2 + 4 x 4 − 2 3 x 2 ] 0 1 I = 2 1 [ 2 1 + 4 1 − 3 2 ] I = 2 1 [ 12 9 − 8 ] = 24 1
Ex8 b)
J = ∫ Γ + y 3 P ( x , y ) d x + x 3 Q ( x , y ) d y { δ δ y P ( x , y ) = 3 y 2 δ δ x Q ( x , y ) = 3 x 2 la forme diff e ˊ rentielle n’est ¯ _(ツ)_/¯ { x = a c o s θ y = b s i n θ { d x = − a s i n θ d θ d y = b c o s θ d θ J = ∫ 0 2 π ( − b 3 s i n 3 θ a s i n θ + a 3 c o s 3 θ b c o s θ ) d θ J = ∫ 0 2 π ( a 3 b c o s 4 θ − a b 3 s i n 4 θ ) d θ abandon du prof \begin{split}
&J = \int_{\Gamma^+}\frac{y^3}{P(x,y)}dx+\frac{x^3}{Q(x,y)}dy\n
&\embrace{&\frac{\delta}{\delta y}P(x,y)=3y^2\\&\frac{\delta}{\delta x}Q(x,y)=3x^2}{\{}{.}\quad\text{la forme différentielle n'est ¯\\ \_(ツ)\_/¯}\n
&\embrace{&x=acos\theta\\&y=bsin\theta}{\{}{.}\quad\quad \embrace{&dx=-asin\theta d\theta\\&dy=bcos\theta d\theta}{\{}{.}\n
&J=\int_0^{2\pi}(-b^3sin^3\theta asin\theta+a^3cos^3\theta bcos\theta)d\theta\n
&J=\int_0^{2\pi}\pembrace{a^3bcos^4\theta-ab^3sin^4\theta}d\theta\n
&\text{abandon du prof}
\end{split}
J = ∫ Γ + P ( x , y ) y 3 d x + Q ( x , y ) x 3 d y ⎩ ⎨ ⎧ δy δ P ( x , y ) = 3 y 2 δ x δ Q ( x , y ) = 3 x 2 la forme diff e ˊ rentielle n’est ¯ _( ツ )_/¯ { x = a cos θ y = b s in θ { d x = − a s in θ d θ d y = b cos θ d θ J = ∫ 0 2 π ( − b 3 s i n 3 θ a s in θ + a 3 co s 3 θ b cos θ ) d θ J = ∫ 0 2 π ( a 3 b co s 4 θ − a b 3 s i n 4 θ ) d θ abandon du prof
de retour sur l'elipse
∬ D ( 2 x 3 − y ) d x d y D = { ( x , y ) ∈ R 2 ∣ x ≥ 0 , y ≥ 0 , x 2 a 2 + y 2 b 2 ≤ 1 } changement de var { x = a r c o s θ y = b r s i n θ J ϕ = ∣ δ x δ r δ x δ θ δ y δ r δ y δ θ ∣ = ∣ a c o s θ − a r s i n θ b s i n θ − b r c o s θ ∣ ∣ D e t J p h i ∣ = ∣ a b r ∗ ( c o s 2 θ + s i n 2 θ ) ∣ = ∣ a b r ∣ J = ∫ 0 1 ∫ 0 π 2 ( 2 ( a r c o s θ ) 3 − b r s i n θ ) ∗ ∣ d e t J ϕ ∣ d θ d r J = ∫ 0 1 ∫ 0 π 2 ( 2 a 3 r 3 c o s ¨ 3 θ − b r s i n θ ) a b r d θ d r J = ∫ 0 1 ∫ 0 π 2 2 a 4 b r 4 c o s 3 θ d θ d r J − ∫ 0 1 ∫ 0 π 2 a b 2 r 2 s i n θ d θ d r = I 1 − I 2 I 2 = a b 2 ∫ 0 1 r 2 d r ∫ 0 π 2 s i n θ d θ I 2 = a b 2 [ r 3 3 ] 0 1 [ − c o s θ ] 0 π 2 I 2 = a b 2 1 3 ∗ [ − c o s π 2 − ( − c o s θ ) ] ⏟ 0 − ( − 1 ) = 1 I 2 = a b 2 3 I 1 = 2 a 4 b ∫ 0 1 r 4 d r ∫ 0 π 2 c o s 3 θ d θ I 1 = 2 a 4 b [ r 5 5 ] 0 1 ∫ 0 π 2 c o s 3 θ d θ I 1 = 2 a 4 b 5 ∫ 0 π 2 c o s 3 θ d θ ∣ ∫ 0 π 2 c o s 3 θ d θ = [ 1 3 s i n 3 θ ] 0 π 2 + [ s i n 3 θ ] 0 π 2 = 2 3 I 1 = 4 a 4 b 15 I = I 1 − I 2 = 4 a 4 b 15 − a b 2 3 \begin{split}
&\iint_D(2x^3-y)dxdy\\
&D=\aembrace{(x,y)\in\R^2\ |\ x\ge0,\ y\ge0,\ \frac{x^2}{a^2}+\frac{y^2}{b^2}\le1}\n
&\text{changement de var}\\
&\quad \embrace{&x=arcos\theta\\&y=brsin\theta}{\{}{.}\n
&J_{\phi}=
\embrace{
&\frac{\delta x}{\delta r}\frac{\delta x}{\delta\theta}\\
&\frac{\delta y}{\delta r}\frac{\delta y}{\delta\theta}
}{|}{|}=
\embrace{
&acos\theta\quad-arsin\theta\\
&bsin\theta\quad \phantom{-}brcos\theta
}{|}{|}\n
&|Det J_{phi}| = |abr*(cos^2\theta+sin^2\theta)|=|abr|\n
&J=\int_0^1\int_0^{\frac{\pi}2}(2(arcos\theta)^3-brsin\theta)*|det J_{\phi}|d\theta dr\n
&\phantom{J}=\int_0^1\int_0^{\frac{\pi}2}(2a^3r^3cos¨3\theta-brsin\theta)abrd\theta dr\n
&\phantom{J}=\int_0^1\int_0^{\frac{\pi}2}2a^4br^4cos^3\theta d\theta dr\n
&\phantom{J}-\int_0^1\int_0^{\frac{\pi}2}ab^2r^2sin\theta d\theta dr = I_1-I_2\n
&I_2=ab^2\int_0^1r^2dr\int_0^{\frac{\pi}2}sin\theta d\theta\n
&I_2=ab^2 \cembrace{\frac{r^3}3}_{0}^{1} \cembrace{-cos \theta}_{0}^{\frac{\pi}2}\n
&I_2=ab^2\frac13*\underbrace{\cembrace{-cos\frac{\pi}2-(-cos\theta)}}_{0-(-1)=1}\n
&I_2=\frac{ab^2}{3}\n
&I_1=2a^4b\int_0^1r^4dr\int_0^{\frac{\pi}2} cos^3\theta d\theta\n
&I_1=2a^4b \cembrace{\frac{r^5}5}_{0}^{1}\int_0^{\frac{\pi}2}cos^3\theta d\theta\n
&I_1=\frac{2a^4b}{5}\int_0^{\frac{\pi}2}cos^3\theta d\theta\n
&\quad\embrace{\int_0^{\frac{\pi}2}cos^3\theta d\theta = \cembrace{\frac13sin3\theta}_{0}^{\frac{\pi}2}+ \cembrace{sin^3\theta}_{0}^{\frac{\pi}2}=\frac23}{|}{.}\n
&I_1= \frac{4a^4b}{15}\n
&I = I_1-I_2=\boxed{\frac{4a^4b}{15}-\frac{ab^2}{3}}
\end{split}
∬ D ( 2 x 3 − y ) d x d y D = { ( x , y ) ∈ R 2 ∣ x ≥ 0 , y ≥ 0 , a 2 x 2 + b 2 y 2 ≤ 1 } changement de var { x = a rcos θ y = b rs in θ J ϕ = δr δ x δ θ δ x δr δy δ θ δy = a cos θ − a rs in θ b s in θ − b rcos θ ∣ De t J p hi ∣ = ∣ ab r ∗ ( co s 2 θ + s i n 2 θ ) ∣ = ∣ ab r ∣ J = ∫ 0 1 ∫ 0 2 π ( 2 ( a rcos θ ) 3 − b rs in θ ) ∗ ∣ d e t J ϕ ∣ d θ d r J = ∫ 0 1 ∫ 0 2 π ( 2 a 3 r 3 cos ¨3 θ − b rs in θ ) ab r d θ d r J = ∫ 0 1 ∫ 0 2 π 2 a 4 b r 4 co s 3 θ d θ d r J − ∫ 0 1 ∫ 0 2 π a b 2 r 2 s in θ d θ d r = I 1 − I 2 I 2 = a b 2 ∫ 0 1 r 2 d r ∫ 0 2 π s in θ d θ I 2 = a b 2 [ 3 r 3 ] 0 1 [ − cos θ ] 0 2 π I 2 = a b 2 3 1 ∗ 0 − ( − 1 ) = 1 [ − cos 2 π − ( − cos θ ) ] I 2 = 3 a b 2 I 1 = 2 a 4 b ∫ 0 1 r 4 d r ∫ 0 2 π co s 3 θ d θ I 1 = 2 a 4 b [ 5 r 5 ] 0 1 ∫ 0 2 π co s 3 θ d θ I 1 = 5 2 a 4 b ∫ 0 2 π co s 3 θ d θ ∫ 0 2 π co s 3 θ d θ = [ 3 1 s in 3 θ ] 0 2 π + [ s i n 3 θ ] 0 2 π = 3 2 I 1 = 15 4 a 4 b I = I 1 − I 2 = 15 4 a 4 b − 3 a b 2
Volume de l'ellipsoide
x 2 a 2 + y 2 b 2 + z 2 c 2 ≤ 1 ∣ V s p h e r e = 4 3 π r 3 V e l l i p s o i d e = 4 3 π a b c { x = a r s i n θ c o s ϕ y = b r s i n θ s i n ϕ z = c r c o s θ r ∈ [ 0 , 1 ] θ ∈ [ 0 , π ] ϕ ∈ [ 0 , 2 π ] d e t J ϕ = a b c r 2 s i n θ V = ∭ V d x d y d z V = a b c ∫ 0 1 ∫ 0 π ∫ 0 2 π r 2 s i n θ d θ d ϕ d r ⏟ 4 3 π V = 4 3 π a b c \begin{split}
\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1\n
&\embrace{
&V_{sphere}=\frac43\pi\ r^3\\
&V_{ellipsoide}=\frac43\pi\ abc
}{|}{.}\n
&\embrace{
&x=arsin\theta\ cos\phi\\
&y=brsin\theta\ sin\phi\\
&z=crcos\theta
}{\{}{.}\quad\quad \embrace{
&r\in [0,1]\\
&\theta\in[0,\pi]\\
&\phi\in[0,2\pi]
}{.}{.}\n
&det J_{\phi}=abc\ r^2sin\theta\n
&V=\iiint_Vdxdydz\n
&V=abc \underbrace{\int_0^1\int_0^\pi\int_0^{2\pi}r^2sin\theta\ d\theta_ d\phi\ dr}_{\frac43\pi}\n
&V= \frac43\pi\ abc
\end{split}
a 2 x 2 + b 2 y 2 + c 2 z 2 ≤ 1 V s p h ere = 3 4 π r 3 V e ll i p so i d e = 3 4 π ab c ⎩ ⎨ ⎧ x = a rs in θ cos ϕ y = b rs in θ s in ϕ z = crcos θ r ∈ [ 0 , 1 ] θ ∈ [ 0 , π ] ϕ ∈ [ 0 , 2 π ] d e t J ϕ = ab c r 2 s in θ V = ∭ V d x d y d z V = ab c 3 4 π ∫ 0 1 ∫ 0 π ∫ 0 2 π r 2 s in θ d θ d ϕ d r V = 3 4 π ab c