-
I=∫1∞1+a2xaxdx avec a>0
I=∫1∞1+a2xaxdxa>0 t=ax lnt=xlna x=lnalnt⇒dx=lna1tdt
Disjonction de cas :
-
si a>1
I=∫a01+t2tlna1tdt I=lna1∫a01+t21dt I=lna1[arctgt]a0I=lna1(2π−arctga)
-
si a=1
I=∫1∞1+12x1x I=∫1∞21dx
-
si a<1
I=−∫0a1+t21lnadt I=lna−1[arctgt]0a I=lna−1[arctga−arctg0] I=−lnaarctga
-
In=∫0∞tne−t2
f(t)=tne−t2 est continue sur R t→∞limtne−t2=0t→∞limtne−t=0
-
n→∞limtn+2t−2=0 ∃A>0 tn+2t−2<1⇔tnt−2<t21 ⇒In≤CVG∫0∞t21dtCVG I0=∫0∞e−t2dt=2π I1=∫0∞te−t2dt=[−21e−t2]0∞=21 In=∫°∞tne−t2dt In=∫°∞tn−1∗te−t2dt u=tn−1u′=(n−1)tn−2v′=te−t2v=−21e−t2 In==0[tn−1∗(−21e−t2)]0∞+∫0∞21e−t2(n−1)tn−2dt In=21(n−1)∫0∞tn−2e−t2dt In=2n−1In−2 donc : I2=21∗I0=4πI3=1∗I1=21I4=23∗I2=83πI5=2∗I3=1I6=25∗83πI7=3∗I5=3I9=4∗I7=12I2p+1=f1(p)∗I1I2p=f2(p)∗I0
-
I=∫0∞xcos4xdx
ParseError: KaTeX parse error: Undefined control sequence: \bembrace at position 51: … \int_0^\infty \̲b̲e̲m̲b̲r̲a̲c̲e̲{x\cos^4x}dx\le…
-
I=∫0∞1+x2xndx
I=∫0∞1+x2xndx u=x2→u′=nxn−1v′=1+x21→v=arctgx In=∞[xnarctgx]0∞ Inn≤2DVG I0=∫0∞1+x21dx I0=[arctgx]0∞ I0=2π I1:1+x2xx→∞x1⇒DVG